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Abstract
Downwelling longwave radiation (DLR) driven by the atmospheric and cloud conditions in the troposphere is suggested to 
be a dominant factor to determine the summertime net surface energy budget over the Arctic Ocean and thus plays a key role 
to shape the September sea ice. We use reanalyses and the self-organizing map (SOM) method to distinguish CMIP6 model 
performance in replicating the observed strong atmosphere-DLR connection. We find all models can reasonably simulate 
the linkage between key atmosphere variables and the clear sky DLR but behave differently in replicating the atmosphere-
DLR connection due to cloud forcing. In ERA5 and strongly coupled models, tropospheric high pressure is associated with 
decreased clouds in the mid- and high-levels and increased clouds near the surface. This out-of-phase structure indicates that 
DLR cloud forcing is nearly neutral, making the clear sky DLR more important to bridge JJA circulation to late-summer sea 
ice. In MERRA-2 and weakly coupled models, tropospheric clouds display a vertically homogeneous reduction; the cloud 
DLR is thus strongly reduced due to the cooling effect, which partially cancels out the clear sky DLR and makes the total 
DLR less efficient to translate circulation forcing to sea ice. The differences of cloud vertical distribution in CMIP6 appear 
to be differentiated by circulation related relative humidity. Therefore, a better understanding of the discrepancy of different 
reanalyses and remote sensing products is critical to comprehensively evaluate simulated interactions among circulation, 
clouds, sea ice and energy budget at the surface in summer.
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1 Introduction

Over the past four decades, profound changes have taken 
place in the Arctic with surface temperature increased at 
least twice the global average rate, known as “Arctic Ampli-
fication” (Graversen et al. 2008; Serreze et al. 2009; Screen 
and Simmonds 2010; Overland et al. 2015). This pronounced 
phenomenon, which has led to Pan-Arctic loss of sea ice, 
glacial ice and permafrost (Stroeve et al. 2012; Van den 
et al. 2016; Chadburn et al. 2017), is primarily attributed to 
increased anthropogenic greenhouse gas emissions (IPCC 
2014). However, a quite steady rise in anthropogenic forcing 
over past decades was accompanied by accelerated sea ice 
melting from the late 1990s to 2012 and by a near-zero Sep-
tember sea-ice trend from 2012 onward (Swart et al. 2015; 
Francis and Wu 2020), revealing the complex nature of cli-
mate change in the Arctic and the possible role of internal 
variability in masking or strengthening anthropogenically 
driven Arctic amplification on interannual-to-decadal time 
scales. In particular, some atmospheric processes driving 
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a strongly coupling between the atmosphere and sea ice in 
summer are believed to account for about 40% of the sea 
ice decline over the past decades (Ogi et al. 2010; Kay et al. 
2011; Wettstein and Deser 2014; Ding et al. 2017). One such 
process is characterized by summertime barotropic high 
pressure over Greenland and the Arctic Ocean which can 
modifiy temperature, humidity, cloud properties and sur-
face winds and thus regulates sea ice through atmospheric 
thermodynamic and dynamic effects (Ogi and Wallace 2012; 
Kay et al. 2016; Sedlar and Tjernström 2017). The strong 
subsidence residing in the core of the high pressure adi-
abatically heats and consequently moistens the air above sea 
ice, both of which favor enhanced emission of downwelling 
longwave radiation to melt sea ice (Ding et al. 2017; Ding 
et al. 2019).

In the Arctic climate system, physical properties of 
clouds, such as amount, height, optical thickness, size of 
cloud droplets and phase partitioning are known to be key 
factors in determining the surface heat budget over a broad 
range of time scales due to their radiative effects (Curry 
et al. 1988; Kay et al. 2008, 2016). These properties display 
distinct seasonal variations and are subject to complex inter-
actions with the atmosphere, ocean, sea ice, aerosols and 
large-scale circulation (Eastman and Warren 2010). Clima-
tologically, clouds are more sensitive to sea ice conditions 
in cold seasons than in warmer months but can vigorously 
respond to large-scale circulation changes throughout the 
year. Specifically, during autumn, increased low-level clouds 
are a key feature associated with recent sea ice retreat due 
to strong latent and sensible heat fluxes over the marginal 
ice zone (Schweiger et al. 2008; Morrison et al. 2019). Arc-
tic winter clouds, which predominately contain more ice, 
are able to trap heat and reemit it down to the surface and 
can thus strongly regulate temperature and static stability 
of the low boundary layer (Jun et al. 2016). Spring is a key 
season to precondition summer melt, seeing more active 
interactions among clouds, sea ice and surface radiation 
(Sedlar 2018; Huang et al. 2019). Once entering summer, 
the response of clouds to surface conditions is suppressed 
by a reduced air-sea temperature gradient and results in a 
distinctive behavior of Arctic clouds from the other three 
seasons with a stronger sensitivity to large-scale circulation 
and distribution of moisture and aerosols than to the surface 
conditions (Kay and Gettelman 2009; Kay et al. 2016; Mor-
rison et al. 2019).

A multi-decadal summer large-scale circulation trend 
toward an anticyclonic anomaly over Greenland and the 
western Arctic and its induced downward motion in the 
troposphere has been suggested to drive reductions in mid-
dle and high-level cloud cover and increases in low-level 
clouds (Ding et al. 2017; Ding et al. 2019; Huang et al. 
2021). A better understanding of the summer low-level cloud 
response to circulation changes is particularly critical since 

low-level clouds (bases < 3 km, Chernykh et al. 2001) have 
a greater impact on the Arctic surface energy budget than 
clouds at higher levels, owing to their proximity to the sur-
face, frequent occurrence, higher emission temperatures, as 
well as they are more often composed of liquid (Shupe and 
Intrieri 2004; Winton 2006; Kay et al. 2008, 2012; Kay and 
Gettelman 2009; Cesana et al. 2012). These features make 
summertime low-level clouds more effective at emitting 
downwelling longwave radiation (Shupe and Intrieri 2004; 
Bennartz et al. 2013), while high reflectivity of low-level 
clouds can also alter downwelling shortwave through chang-
ing cloud transmittance and multiple-reflection between the 
surface and low clouds (Kapsch et al. 2016). Thus, summer-
time low-level clouds are one of the most important factors 
in the Arctic climate system by modulating the net surface 
radiation and consequently the rate of summer sea ice melt.

Considering the important influence of clouds on the sur-
face energy budget and sea ice variability and the governing 
role of circulation in shaping clouds in summer, the ability 
of models to reproduce these observed relationships is a pre-
requisite for accurate simulations and projections of Arctic 
summertime sea ice variability. However, previous attempts 
to address this issue are limited (Huang et al. 2019; Topál 
et al. 2020). Luo et al. (2021) developed a process-oriented 
metric using sea ice, temperature, and specific humidity to 
examine how well observed atmosphere-sea ice interactions 
can be replicated by fully coupled general circulation models 
(GCMs) of CMIP5 and CMIP6. They found that models gen-
erally underestimate the impact of atmospheric forcing on 
sea ice change. The representation of clouds’ vertical struc-
ture and cloud-driven downward longwave radiation was 
speculated to be one possible source of model deficiency 
in capturing the observed atmosphere-sea ice connections. 
Therefore, in this study, we aim to make new progress by 
assessing CMIP6 models’ skill in capturing the observed 
linkage between summertime Arctic circulation and the sur-
face energy budget and the specific role of Arctic clouds 
in this linkage on interannual time scales. This evaluation 
will help us better understand the possible causes of model 
biases and limitations in replicating the observed connec-
tion between sea ice and the atmosphere in summer with 
implications for directing future model improvement efforts.

2  Data and methods

2.1  Circulation, radiation, cloud and sea ice data

Since we focus on interannual variability of atmosphere-
DLR connections, all data in observations, reanalysis and 
model simulations used in this study are monthly means. We 
use reanalysis data of geopotential height (Z), temperature 
(Temp.), specific humidity (Spe.Hum), relative humidity 
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(Rel.Hum) and a number of surface energy budget terms (see 
Eq. 3) from ERA5 (1979–2019, Hersbach et al. 2020) and 
the assimilation version of MERRA-2 (1980–2019, GMAO 
2015, Gelaro et al. 2017) to measure the Arctic atmospheric 
variability. ERA5 employs the updated assimilation sys-
tem of the Integrated Forecasting System (IFS) Cycle 41r2 
including sea ice concentration based on OSI-SAF satellite 
passive microwave radiometry, thus increasing its reliabil-
ity for polar atmospheric and oceanic studies (Wang et al. 
2019; Mayer et al. 2019, 2022). The assimilation version of 
MERRA-2 is also treated as a reliable reanalysis to study 
Arctic climate variability (Gelaro et  al. 2017) because 
the surface energy budget in the Arctic is constrained by 
measurements derived from the SHEBA field experiments 
(Duynkerke and de Roode 2001), allowing for a more real-
istic representation of Arctic radiation.

Although the variable Rel.Hum is available in both 
reanalysis products, some discrepancies of this variable 
between the two were found in previous studies (Graham 
et al. 2019a, b). Thus we need to decompose it into its 
components (in Sect. 4.2) to understand why ERA5 and 
MERRA-2 show some different features of changes in the 
boundary layer in Arctic summer. We calculate this variable 
as the ratio of vapor pressure (e, unit:hPa) to saturation vapor 
pressure (es, unit:hPa):

The variation of e is related to the specific humidity in 
the reanalysis, and the relationship between the two is rep-
resented as:

where p is pressure at different levels. Rd and Rv are gas 
constants for dry air (287  J   K−1   kg−1) and water vapor 
(461 J  K−1  kg−1), respectively. It is found that the algorithm 
to calculate e is identical across different reanalyses while 
the methods to obtain es use different approaches and cri-
teria in reanalyses. In ERA5, for instance, es over water 
(warmer than  0◦C) and ice (colder than -23◦C) is determined 
by two different empirical functions and a quadratic interpo-
lated value of the two functions for the temperature between 
 0◦C and −  23◦C (see Data Availability for details). We also 
explored various other methods, including the original Clau-
sius–Clapeyron equation and different empirical fits (i.e., 
Murray 1967, where es over ice or water is calculated by 
reference to the temperature below or above  0◦C) to estimate 
es and find that the result is not sensitive to these methods. 
Given this, we calculate es using the method derived by 
Murray (1967) and Eq. 1 in this study.

(1)
Rel.Hum

100%
=

e

es

(2)e =
p ∗

Spe.Hum

1−Spe.Hum

� +
Spe.Hum

1−Spe.Hum

� = Rd∕Rv = 287∕461 = 0.622

Monthly sea ice concentration is derived from Goddard 
edited passive microwave retrievals that have been com-
piled by the National Snow and Ice Data Center (NSIDC, 
Cavalieri et al. 1996). The data are gridded on the NSIDC 
polar stereographic grid with 25 × 25 km grid cells. To 
represent the Pan-Arctic sea ice variability for the period 
1979 to 2019, we calculate the sea ice area (SIA) index by 
performing an areal integral of sea ice concentration over 
all Northern Hemisphere grid cells with the concentration 
larger than 15%.

The net surface energy flux  (Qnet) is calculated as:

where DLR (ULR) is downward (upward) longwave radia-
tion, DSR (USR) indicates downward (upward) shortwave 
radiation, and SH and LH are the sensible heat flux and 
latent heat flux, respectively. The fluxes pointing downward 
(upward) have positive (negative) values in Eq. 3 and thus 
 Qnet is positive downward and refers to the heat transferred 
from the atmosphere to the surface. To reflect radiative con-
ditions over the Arctic Ocean that are conducive to sea ice 
changes, we only use values over ocean grid cells north of 
 70oN to construct the Pan-Arctic average of each surface 
flux.

To better understand how models represent radiation 
variability, radiative parameterizations and schemes over 
the past decades were thoroughly studied and reviewed in 
the literature (Efimova 1961; Jacobs 1978; Wild et al. 1995; 
King and Connolley 1997). The Rapid Radiative Transfer 
Model (RRTM, Mlawer et al. 1997) or the accelerated ver-
sion for General Circulation Models (RRTMG) have been 
developed to balance sufficient accuracy with computational 
efficiency in calculating shortwave and longwave radiative 
fluxes under both clear and cloudy conditions. In RRTM 
(RRTMG), the total DLR at the surface is written as the sum 
of DLR for clear-sky and cloudy portion of model grids, 
respectively, as:

It has been suggested that Arctic cloud and radiation in 
reanalyses contain large uncertainties, which poses great 
challenges for accurate radiation budget calculations and 
model evaluations regarding the role of clouds in regulating 
radiation and climate sensitivity in the Arctic. The sources of 
the uncertainty in satellite measurements of cloud variability 
are primarily attributed to the difference in the cloud-detec-
tion algorithms, a limited accuracy in measuring the albedo 
effect of the ice-covered surface, the absence of insolation 
during polar night, and complex cloud formation processes 
in the presence of temperature inversions and cloud conden-
sation due to multiple scale interactions between large-scale 
processes and boundary conditions in the Arctic (Curry et al. 

(3)Qnet = DLR − ULR + DSR − USR + SH + LH

(4)DLR = DLRclear sky + DLRcloud
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1996; Shupe and Intrieri 2004; Walsh et al. 2009; Cher-
nokulsky and Mokhov 2012). A number of intercomparison 
projects have been conducted to estimate these uncertain-
ties among reanalyses, satellite measurements and field 
observations (Chernokulsky and Mokhov 2012; Zib et al. 
2012; Huang et al. 2017). It is noted that although reanalysis 
offers a better spatial and temporal coverage to facilitate an 
examination of interactions between clouds and atmospheric 
variables, they contain substantial cloud biases (Huang et al. 
2017). Alternatively, satellite data retrieved from passive 
sensors is generally considered more reliable, but with a 
relatively short record and a lack of high vertical resolution.

Considering the pros and cons of each dataset, we 
will use cloud data from ERA5 (1979–2019), MERRA-2 
(1980–2019), the GCM-based Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation (CALIPSO-
GOCCP, 2006–2016, Chepfer et al. 2010), and Clouds and 
Earth's Radiant Energy System Energy Balanced And Filled 
(CERES-EBAF-Surface Ed4.0, 2006–2016, Loeb et  al. 
2018) in this study to examine cloud radiative influences 
in shaping the atmosphere-sea ice connection. ERA5 and 
MERRA-2 are considered as two of the more reliable rea-
nalysis products (Graham et al. 2019a, b) incorporating all 
available satellite and in-situ information and using the most 
updated 4- (Hersbach et al. 2020) and 3-dimension (Kleist 
et al. 2009) assimilation schemes, respectively. CALIPSO-
GOCCP is a GCM-based assimilated cloud data product 
constrained primarily by input from CALIPSO and uses a 
new observational technique of cloud phase identification 
(Cesana and Chepfer 2013), which is found to be useful for 
climate model evaluation and recalibration (Cesana et al. 
2012). EBAF is created by the NASA CERES team observ-
ing broadband top-of-atmosphere (TOA) flux measurements, 
coincident image data of the Moderate Resolution Imaging 
Spectrometer (MODIS) and the Visible Infrared Imaging 
Radiometer Suite (VIIRS). For Ed4.0, CERES assimilated 
aerosols in calculations and used MODIS cloud mask to 
differentiate clouds from high-albedo sea ice and snow 
cover, which substantially improves cloud identification in 
the polar region (Loeb et al. 2018). Therefore cloud cover 
from CERES-EBAF and surface fluxes from CERES-EBAF-
Surface are considered as the most reliable data source to 
evaluate the Arctic radiative budget in simulations (Eng-
lish et al. 2015; Boeke and Taylor 2016; Christensen et al. 
2016; Huang et al. 2017). CALIPSO-GOCCP equipped 
with the Cloud-Aerosol Lidar with Orthogonal Polarization 
(CALIOP) instrument is sensitive to cloud presence and thus 
provides reliable information on cloud vertical structure. 
CALIPSO-GOCCP cloud cover is vertically-oriented by 
height and is interpolated into pressure levels on the monthly 
basis in each grid based on the corresponding height and 
pressure relationship at the same time and same location 
derived from ERA5 for the simplicity of comparisons.

2.2  CMIP6 simulations

The model evaluation is based on monthly outputs of 
33 CMIP6 models' pre-industrial simulations (hereaf-
ter referred to as ‘PI’) that are generally integrated over 
500 years (Table 1). For each simulation, we first utilize 
the pseudo-ensemble method to trim the whole period into 
many short 40 consecutive year periods (with the same 
length as the present-day observational record) and then 
analyze the circulation-surface flux connection during 
each 40-year period. The ensemble mean of all members is 
then calculated to represent an individual model’s overall 
ability to simulate observed features. Model performance 
calculated using the whole integration period at once is 
nearly identical to that from the pseudo-ensemble method. 
We will primarily illustrate the results derived from the 
pseudo-ensemble method in the rest of this study since 
this approach considers the same time length for model 
integrations and observations.

Since anthropogenic forcing is not prescribed in PI 
experiments, simulated changes only reflect responses to 
internal variability. No temporal filter is used to process 
CMIP6 data before the assessment. All CMIP6 model out-
puts, ERA5, MERRA-2, CALIPSO-GOCCP and CERES-
EBAF data are regridded to the same horizontal (1.5o × 
1.5°) and vertical resolutions (19 levels from 1000 to 
100 hPa with an interval of 50 hPa) to facilitate a compari-
son between model output and reanalysis. In addition, all 
variables below the terrain level in the two reanalyses and 
CMIP6 models are masked by a missing value to eliminate 
any possible inaccuracies in the following calculations.

2.3  Partial correlation method

Partial correlation is a method reflecting the linear rela-
tionship between two variables while controlling the 
impact of other variables. The calculation formula is as 
follows:

where rxy,z represents correlations coefficients of variable x 
and y removing the influence of variable z. rxy, rxz, ryz are 
correlation coefficients between x and y, x and z, y and z, 
respectively. In Fig. 1g using this method, x is September 
SIA index, y is JJA Z index, and z refers to JJA index of  Qnet 
(or one of other components displayed in Eq. 3), which pro-
vides us a statistical way to examine the relative importance 
of different radiative fluxes (z) in bridging the large-scale 
circulation (y) and sea ice variability (x).

(5)
rxy,z =

rxy − rxz ∗ ryz
√

1 − r2
xz
∗
√

1 − r2
yz
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2.4  Self‑organizing maps

To conduct model evaluations, methods such as spatial cor-
relation and root mean square error (RMSE) are widely used 
to provide statistical criteria measuring how close model 
simulations are to observed counterparts. However, these 
methods cannot provide detailed information of how models 
replicate signals over regions of interest, such as at which 
grid points models fail to reproduce observed information. 
To overcome these limitations, an artificial neural network-
based approach, known as Self-Organizing Maps (SOMs, 

Kohonen 1990), is used in this study to assess CMIP6 model 
skill in reproducing detailed spatial features of observed cor-
relation patterns between circulation and radiation fluxes. By 
using an unsupervised competitive machine learning algo-
rithm (available in MATLAB v9.10.0 as SOM), this SOM 
method produces a set of patterns that characterize the key 
spatial features of a dataset. We also use RMSE and spatial 
correlation as a complementary approach to reevaluate the 
same group of patterns.

We first apply the SOM method on a group of circula-
tion-flux correlation maps derived from 33 CMIP6 models. 

Table 1  Features of 33 climate models of pre-industrial control runs (PI runs) in CMIP6

Models with similar Z-DLR coupling patterns are clustered into 6 nodes based on Self-Organizing Map (SOM) method. Asterisks indicate mod-
els in which cloud cover data is not available

CMIP6 Model Designation
pre-industrial (PI) long con-
trol run

Years SOM node Atmosphere component Aerosol component Resolution lon × lat × lev

1 BCC-CSM2-MR 600 1 weak group BCC_AGCM3_MR Prescribed
2 BCC-ESM1 451 BCC_AGCM3_LR Prescribed
3 CIESM 500 CIESM-AM1.0 (modified 

CAM5)
Prescribed

4 GISS-E2-1-H 801 GISS-E2.1 Prescribed
5 *INM-CM4-8 531 INM-AM4-8 INM-AER1 180 × 120 × 21
6 *INM-CM5-0 1201 INM-AM5-0 180 × 120 × 73
7 IPSL-CM6A-LR 2000 LMDZ Prescribed
8 CESM2 1200 2 CAM6 MAM4 288 × 192 × 32
9 MPI-ESM1-2-HR 500 ECHAM6.3 Prescribed
10 MRI-ESM2-0 701 MRI-AGCM3.5 MASINGAR mk2r4 192 × 96 × 80
11 CMCC-CM2-SR5 500 3 CAM5.3 MAM3 288 × 192 × 30
12 *EC-Earth3-LR 196 IFS CY36R4 Prescribed
13 *EC-Earth3 501
14 *EC-Earth3-Veg-LR 501
15 *EC-Earth3-Veg 500
16 MPI-ESM1-2-LR 1000 ECHAM6.3 Prescribed
17 ACCESS-ESM1-5 900 4 HadGAM2 CLASSIC (v1.0) 192 × 145 × 38
18 *CanESM5 1000 CanAM5 Interactive 128 × 64 × 49
19 CESM2-FV2 500 CAM6 MAM4 144 × 96 × 32
20 E3SM-1–0 500 EAM MAM4 288 × 192 × 72
21 MIROC6 800 CCSR AGCM SPRINTARS6.0 256 × 128 × 81
22 E3SM-1–1-ECA 165 5 EAM MAM4 288 × 192 × 72
23 E3SM-1–1 165
24 FGOALS-g3 700 GAMIL2 Prescribed
25 MPI-ESM-1–2-HAM 780 ECHAM6.3 HAM2.3 192 × 96 × 47
26 ACCESS-CM2 500 6 strong group MetUM-HadGEM3-GA7.1 UKCA-GLOMAP-mode 192 × 144 × 85
27 CESM2-WACCM-FV2 500 WACCM6 (whole atmos-

phere version of CAM6)
MAM4 144 × 96 × 70

28 CESM2-WACCM 499 288 × 192 × 70
29 HadGEM3-GC31-LL 500 MetUM-HadGEM3-GA7.1 UKCA-GLOMAP-mode 192 × 144 × 85
30 HadGEM3-GC31-MM 500 432 × 324 × 85
31 *NorCPM1 500 CAM-OSLO4.1 OsloAero4.1 144 × 96 × 26
32 NorESM1-F 200 CAM4 Prescribed
33 SAM0-UNICON 700 CAM5.3 MAM3 288 × 192 × 30
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Patterns with similar spatial relationships are grouped into 
the same cluster, called a “node”. These nodes are grouped 
to form a two-dimensional array. Then the spatial correla-
tion between each original pattern with its assigned node 
pattern can be calculated and a total of 33 spatial correlation 
coefficients are averaged to quantify the level of success of 
this clustering. Node numbers are ordered by their correla-
tion coefficient, with higher node numbers having stronger 
correlation. Thus, an appropriate node size should be deter-
mined to fully encompass key characteristics of simulated 
patterns derived from a limited sample size of 33 models 
and also maximize differences between neighboring nodes. 
The selection of the specific number of nodes used for SOM 
classification will be detailed in Sect. 3.2.

3  Atmospheric forcing on sea ice 
via the surface energy budget

3.1  The key role of downward longwave radiation 
(DLR) in the circulation‑sea ice connection 
in reanalysis and CMIP6

As a metric proposed by Luo et al. (2021) to quantify the 
summertime atmosphere-sea ice coupling in the Arctic, the 
correlation between September SIA index and ERA5 JJA 
zonal mean geopotential height on interannual time scales 
from 1979 to 2019 is shown in Fig. 1a. The negative correla-
tion from the surface to 200 hPa north of  70oN suggests that 
increased JJA pressure throughout the Arctic troposphere 
precedes a reduction in September sea ice, with the strong-
est negative connection around 200 hPa. Luo et al. (2021) 
focused on the JJA-September relationship because the con-
nection between geopotential height and sea ice is the most 
significant with this time lag, indicating that the causality 
of the relationship should be interpreted as forcing of the 

JJA atmosphere on sea ice in summer (Ding et al. 2017). To 
better illustrate the causal relationship and associated time 
lags, we here additionally calculate the correlation of the two 
variables for any pair between June, July, August, and Sep-
tember SIA with zonal mean geopotential height from June 
to August (supplementary Fig. 1). The connections are much 
weaker when sea ice leads or co-occurs with height (supple-
mentary Figs. 1a-c, 1e, 1f, 1i). However, when Z leads SIA, 
the correlations become stronger (supplementary Figs. 1d, g, 
h, j–l) and the strongest correlation occurs between Z in June 
and September SIA with a similar pattern to that between 
September SIA and JJA Z (supplementary Fig. 1m). The 
lead-lag correlation patterns indicate that the summertime 
circulation change is not sensitive to simultaneous or pre-
ceding sea ice reduction, while the maximum September 
sea ice loss is a cumulative response to atmospheric forcing 
prevailing from June to August. Thus, in this study we pri-
marily use the JJA circulation-September SIA relationship 
to quantify impacts of the atmosphere on sea ice.

Since atmospheric circulation impacts sea ice variability 
through modulating the net surface energy budget  (Qnet) in 
JJA (Luo et al. 2021; Huang et al. 2021; Li et al. 2022), the 
Z-SIA pattern (Fig. 1a, d) looks very similar to the Z-Qnet 
simultaneous connection (Fig. 1b, e), where  Qnet is a Pan-
Arctic average  (70oN–90oN) in JJA. However,  Qnet com-
prises all radiative fluxes and turbulent heat fluxes, requiring 
decomposition to identify the component primarily respon-
sible for the Z-Qnet connection. To explore the individual 
contributions of each flux term in the Z-Qnet connection, 
we firstly define the Z index as the average of JJA zonal 
mean Z over the upper troposphere (Fig. 1a red box), where 
Z has the strongest connection with September SIA. Sta-
tistically, September SIA is closely connected with JJA Z 
(ERA5: R = − 0.63; MERRA-2:R = − 0.60) on interannual 
time scales. Using partial correlation (Eq. 5) to remove the 
contribution of JJA  Qnet in the Z-SIA connection, drops the 
Z-SIA correlation coefficient from -0.63 to -0.19 in ERA5 
and from − 0.60 to − 0.20 in MERRA-2 (Fig. 1g), sug-
gesting the essential role of JJA  Qnet in the Z-SIA relation-
ship. This partial correlation calculation is repeated for each 
radiative flux in JJA and a larger difference between the par-
tial correlation value and original Z-SIA value indicates a 
stronger effect of the surface flux term in linking Z and SIA.

In ERA5 and MERRA-2, total DLR (especially the clear 
sky component) is the leading factor in the Z-SIA linkage 
(Fig. 1g). By removing the effect of total DLR or clear-sky 
DLR, the Z-SIA linkage is found to be greatly weakened 
in ERA5 (a decrease of correlation from 0.63 to ~ 0.2), 
whereas the decrease is more modest in MERRA-2 (0.60 
to ~ 0.3). ULR appears to be another factor as influential as 
total DLR in contributing the statistical linkage between 
Z and SIA. This is because variability of ULR primar-
ily reflects the response to surface temperature changes. 

Fig. 1  Correlations of (a) detrended NSIDC September sea ice area 
(SIA) index, detrended ERA5 JJA (b) net surface energy budget 
 (Qnet) and (c) DLR indices with detrended ERA5 JJA zonal mean 
geopotential height (Z) during the period of 1979–2019. (d–f) 
are same as (a–c) but using JJA detrended MERRA-2 data from 
1980 to 2019. Stippling indicates statistical significance at the 95% 
confidence level based on a two-tailed Student’s t-test consider-
ing the effective sample size. In (g), correlation coefficients of Sep-
tember SIA index and JJA Z index (averaged over the zonal band 
of 70–90oN, 400–200  hPa, red box in a and corresponding partial 
correlations with the influence of  Qnet, total DLR, clear sky DLR, 
cloud DLR, ULR, DSR, USR, SH and LH excluded one at a time in 
ERA5(1979–2019, detrended), MERRA-2(1980–2019, detrended), 
33-CMIP6-model mean of the PI control runs using the whole period 
of the long control runs and the pseudo-ensemble method based on 
an effective sample size of 40  years (Table  1). One standard devia-
tion of 33 CMIP6 model correlations is calculated to denote models’ 
spread and are displayed as dashed lines with their corresponding val-
ues given in parentheses

◂
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However, changes of DLR are mainly determined by the 
atmospheric conditions overlying the surface, which may 
play a more active role to regulate changes of other fluxes 
and eventually determine  Qnet. In particular, the pattern of 
the Z-DLR connection (Fig. 1c) is in excellent agreement 
with the Z-SIA and Z-Qnet patterns (Fig. 1a, b) in ERA5, 
suggesting the connection between September sea ice with 
JJA circulation is most likely through the effect of DLR. 
This finding is supported by wind nudging simulations 
conducted in Huang et al. (2021) and Li et al. (2022), in 
which DLR is suggested to be a key factor to link atmos-
pheric forcing to sea ice. We also note that the Z-DLR con-
nections in ERA5 and MERRA2 (Fig. 1c, f) show slightly 
different structures, indicating that current reanalysis data 
may still have a large uncertainty to simulate DLR and its 
connection with large scale circulation variability in the 
Arctic. In both ERA5 and MERRA-2, ~ 36–40% (R square) 
of the September sea ice explained variance is associated 
with preceding summertime high pressure aloft (ERA5: 
R(Z-SIA) = − 0.63; MERRA-2: R(Z-SIA) = − 0.60), 
while JJA circulation simulated by CMIP6 only accounts 
for ~ 10% of September sea ice variability (CMIP6 
Long Control/pseudo-ENS: R(Z-SIA) = − 0.32/− 0.33). 
Although models clearly lack skill in fully replicating the 
observed coupling strength of Z-SIA, we find that total 
DLR and its clear sky component in JJA are still the most 
important contributors to the SIA-Z connection in CMIP6 
simulations (Fig. 1g). We hereafter primarily focus on 
JJA DLR and its correlation with Z to assess how DLR 
responds to simultaneous large-scale circulation forcing 
across CMIP6 models. Although surface fluxes are also 
available in CERES-EBAF, partial correlations are not 
computed here due to the lack of corresponding circu-
lation data. Therefore, we only show the results of two 
reanalysis datasets.

Based on the Z-DLR pattern in JJA, a model owning 
the largest (smallest) magnitude of the Z-DLR correla-
tion is considered to possess the strongest (weakest) DLR 
sensitivity to atmospheric circulation forcing, which may 
be more conducive to a linkage between JJA atmospheric 
circulation and September sea ice. In this way, our evalu-
ation emphasizes the most essential components of the 
thermodynamic linkage between atmospheric circulation 
and sea ice, through which we expect to gain some new 
insights into the attribution of models’ successes or fail-
ures in replicating the observed Z-SIA connection.

3.2  Characterization of CMIP6 Z‑DLR patterns 
by SOM

To apply SOM on CMIP6 simulations, we first calculate the 
Z-DLR connection in each CMIP6 PI simulation derived from 
all pseudo-ensemble members, generating 33 simulated verti-
cal cross-sections of JJA zonal mean Z in the Arctic (60–90oN, 
1000–100 hPa) related to JJA Pan-Arctic (70–90oN) average 
DLR. Table 2 displays averaged spatial correlation under dif-
ferent SOM nodes scenarios. Using a 2 × 3 array of six total 
SOM nodes (0.78) shows the largest coefficient increase over 
its neighboring node size of 4 (0.74), while adding more nodes 
(such as 8 or 10) did not markedly increase the correlation 
value. This indicates that six nodes is sufficient to capture 
essential spatial information of the original 33 patterns with-
out excessive clustering.

These six nodes can also be divided as a 1 × 6 configura-
tion, which means that the incoming patterns are transformed 
in a way that all signals change in a linear ordered fashion 
(one direction) from node one (1,1) to node six (1,6). In con-
trast, a two-dimensional array of 2 × 3 configuration gives the 
SOM algorithm more flexibility and enables signals to vary 
gradually in dual directions (different directions may imply 
different physical implicaitons). In terms of Z-DLR correlation 
as an example, one direction (from left to right) of the 2 × 3 
configuration represents the change in coupling strength and 
the other direction (from top to bottom) represents the spatial 
extent expansion of the positive correlations around 200 hPa 
along  70oN. We also note that SOM results using either the 
2 × 3 or 3 × 2 configurations are almost identical. Our follow-
ing analysis is hereafter based on a 2 × 3 SOM configuration 
(6 nodes) and a list of models that correspond to each SOM 
node is displayed in Table 1.

From node 1 to node 6, SOM patterns are characterized 
by a gradually enhanced barotropic high pressure structure 
associated with the Arctic DLR increase in CMIP6 (Fig. 2). 
Node 6 has the largest magnitude of correlation coefficient, 
while node 1 exhibits the smallest, thus node 6 and node 1 are 
treated as the strongly and weakly coupled group, respectively. 
The sample size of each node varies from 3 to 8 (node 1/ weak 
group: 7; node 2: 5; node 3: 3; node 4: 6; node 5: 4; node 6/ 
strong group: 8) with the strong/weak groups comprising the 
largest portion of the 33 models: ~ 24/21% of CMIP6 mod-
els, respectively. The SOM classification is consistent with 
an additional evaluation in which the spatial correlation and 
RMSE are calculated between each pattern with the observed 

Table 2  Correlation 
coefficients of different Self-
Organizing Map (SOM) node 
configurations

SOM nodes 2 (1 × 2) 3 (1 × 3) 4 (2 × 2) 6 (2 × 3) 8 (2 × 4) 9 (3 × 3) 12 (3 × 4)

Correlation
coefficient

0.66 0.72 0.74 0.78 0.81 0.84 0.84
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one in ERA5 or in MERRA-2 (Fig. 3, see supplementary 
Fig. 2 for MERRA-2 result). The strongly coupled group 
(node 6) identified by the SOM exhibits much higher spa-
tial correlation (centered, 0.93) and lower RMSE (0.15) with 
ERA5, and the weak group collectively performs very poor in 
reproducing the ERA5 pattern (centered spatial correlation: 
0.24, RMSE: 0.42). The models included in nodes 1 and 6 also 
show this polarity if we use the Z-DLR connection reflected 
by MERRA-2 in the same calculation (supplementary Fig. 2).

Furthermore, based on the metric defined by Luo et al. 
(2021), an average of two correlations (sea ice with both 
temperature and specific humidity), we calculate evaluation 
scores for the 33 models, yielding an average metric score of 
− 0.45, and find that averaged scores in the strong and weak 
groups are − 0.49 and − 0.36, respectively. This suggests 
that the SOM method is able to effectively and objectively 

group the CMIP6 models into a number of separable nodes 
and is a useful tool to characterize the CMIP6 models’ per-
formance in replicating the observed relationships.

What differentiates the strong group models from the 
weak group? One potentially important difference is that the 
strong models include prognostic representations of number 
and size distribution of aerosol particles, acting as cloud 
condensation nuclei (CCN), which is important for capturing 
the low-level liquid-containing cloud response (Mauritsen 
et al. 2011). However, the aerosol variation is prescribed for 
most models in the weak group (Table 1). Furthermore, of 
the eight strong models in node 1, five (CESM2-WACCM, 
CESM2-WACCM-FV2, NorCPM1, NorESM1-F, SAM0-
UNICON) have an atmospheric component based on a 
variant of the Community Atmosphere Model (CAM). This 
may indicate that the relatively better representation of the 

Fig. 2  Self-organizing maps (SOM) of Z-DLR correlation (same as Fig. 1c; note different colorbar limits) in 33 CMIP6 PI control runs using the 
pseudo-ensemble method based on a sample size of 40 years. The list of models that are grouped into individual nodes is displayed in Table 1
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circulation-DLR relationship in this group may be due to 
some unique physical schemes implemented in the CAM 
model versions. More discussion of the similar origin of the 
atmospheric components in this group is included in the final 
section. By focusing on a comparison of simulated connec-
tions between the strongly and weakly coupled groups in 
the next section, we aim to identify apparent differences that 
may help identify potential model deficiencies and related 
physical processes.

4  The uncertain role of clouds in forming 
the Z‑DLR connection

4.1  Complex relationships between atmosphere 
and  DLRcloud

As previous studies (Kay et al. 2009; Ding 2017; Baxter 
et al. 2019, Luo et al. 2021 and Huang et al. 2021) have 
demonstrated, the Z-DLR relationship is established by a 
chain of physical processes, including adiabatic warming 
and moistening, large-scale subsidence, and cloud height 
changes, all of which are sensitive to the anomalous high 
pressure and contribute to enhanced DLR at the surface. 
Since total DLR consists of  DLRclear sky and  DLRcloud 
(Eq. 4), which have different sensitivities to large-scale 
atmospheric forcing and consequently regulate the Z-SIA 

connection differently (Fig. 1g), it is informative to exam-
ine how CMIP6 models replicate the connections of Z and 
other atmospheric variables with  DLRclear sky and  DLRcloud 
separately.

We first calculate the correlation between JJA indices of 
total DLR,  DLRclear sky and  DLRcloud in the Arctic region and 
JJA zonal mean Z in the strong group, weak group and 33 
models’ mean in CMIP6 (indices defined in Sect. 2.1). Cor-
responding patterns in ERA5 and MERRA-2 are also dis-
played as a benchmark to gauge simulated patterns (Fig. 4). 
The apparent differences in the spatial pattern and magnitude 
of simulated Z-DLR connections between strong and weak 
groups (Fig. 4d,e) are expected, as we learned from the SOM 
clustering, and spatial correlation and RMSE examination. 
However, it is noteworthy that the Z-DLRclear sky connection 
pattern and coupling strength are very similar across the 
two reanalyses, 33 models’ mean, and the strong and weak 
groups (Fig. 4f–j). This suggests that all CMIP6 models can 
effectively replicate the observed sensitivity of  DLRclear sky 
to JJA atmosphere variables in the Arctic. This is under-
standable since radiation schemes used by GCMs are accu-
rate to calculate  DLRclear sky sensitivity to the atmospheric 
conditions (e.g., temperature, humidity and greenhouse gas 
concentrations) and well established physical/optical pro-
cesses. On interannual time scales, Arctic  DLRclear sky in JJA 
is closely connected with local barotropic pressure condi-
tions with the strongest connection occurring between 400 to 
200 hPa. Driven by this large-scale high pressure, the same 
pattern found in the Z-DLRclear sky connection (Fig. 4f–j) is 
also present in T- and Spe.Hum-DLRclear sky relationships 
(Fig. 5f–j, 6f–j).

However,  DLRcloud-related linkages depict very different 
structures in reanalyses and CMIP6 models with even oppo-
site patterns between the strong and weak groups as well 
as between ERA5 and MERRA-2. In ERA5 and the strong 
group, larger  DLRcloud is related to a significant higher 
geopotential height in the whole troposphere (Fig. 4k,n) 
and warmer temperature under 400 hPa north of ~  70oN 
(Fig. 5k,n). In contrast, a notable low pressure anomaly 
mainly within  70oN–80oN leads to increased cloud-related 
DLR in MERRA-2 and the weak group (Fig. 4l,o). Addi-
tionally, the simulated  DLRcloud is weakly correlated with 
specific humidity in all CMIP6 models and the same weak 
correlation is seen in the two reanalyses (Fig. 6k–o).

Since early work has indicated that large-scale subsid-
ence in the troposphere is key to drive the formation of 
clouds in the Arctic (Kay and Gettelman 2009; Ding et al. 
2017), we next investigate the relationship between verti-
cal motion and DLR. The omega-DLRclear sky connection is 
consistent between the reanalyses (Fig. 7f, g) and no similar 
signal is present in the CMIP6 multi-model mean and both 
strong and weak groups (Fig. 7h–j), indicating that climate 
models overall underestimate the sensitivity of atmospheric 

Fig. 3  Spatial correlation versus root mean square error (RMSE) of 
ERA5 Z-DLR coupling with SOM patterns of node 6 (red filled cir-
cle), node 1 (blue filled circle), strong group models (red stars), weak 
group models (blue stars) and 33 CMIP6 PI control runs using the 
pseudo-ensemble method based on a sample size of 40-year (gray 
stars)



1983Uncertain role of clouds in shaping summertime atmosphere‑sea ice connections in reanalyses…

1 3

temperature to adiabatic warming associated with large-
scale vertical motion in the Arctic. We find that  DLRcloud is 
significantly connected with subsidence in the high Arctic 
 (80oN–90oN) in ERA5 (Fig. 7k) and a similar but weaker 
pattern is seen in the strong group (Fig. 7n). In MERRA-2 
and the weak group, the pattern is almost reversed with 
an upward motion associated with increased  DLRcloud 
(Fig. 7l,o). Taken together, the above analysis indicates that 
climate models largely replicate the observed connection 
of  DLRclear sky with atmospheric conditions but simulate 
different governing effects of the circulation on clouds and 
associated DLR. As a result of the very different effects of 
simulated clouds on DLR across models, the relative contri-
bution of  DLRcloud and  DLRclear sky to total DLR in CMIP6 
is significantly different from that in ERA5.

In ERA5 and MERRA-2, the correlations of  DLRclear sky 
with total DLR are 0.89 and 0.83, respectively. In 33 CMIP6 
models, these values range from 0.97 to − 0.31 and the 
strong group has the highest average value (0.83) as that 
in MERRA-2 (Fig. 8), highlighting the dominant role of 
 DLRclear sky. However, the degree of correlation between 
 DLRcloud and total DLR varies across different reanalyses 

and CMIP6 models (Fig. 8). This result suggests that sum-
mertime cloud formation in the Arctic is very complex and 
there are large uncertainties in models and reanalyses in rep-
resenting interactions between clouds and large-scale atmos-
pheric variables. Considering the large discrepancy of ERA5 
and MERRA-2 in depicting the connection of  DLRcloud with 
atmospheric forcing, it’s necessary to further characterize 
the relationship between circulation and clouds by making 
use of two additional satellite measurements.

4.2  Large uncertainties of reanalyses and CMIP6 
models in simulating low‑level clouds

To better understand how Arctic clouds respond to large-
scale circulation in models, reanalyses and satellite measure-
ments, we correlate the  DLRcloud index with clouds and other 
key atmospheric variables to explore how different datasets 
represent cloud variations at various heights and how large-
scale circulation forcing regulates  DLRcloud through chang-
ing the vertical structure of clouds. Figure 9 illustrates the 
vertical distribution of clouds in relation to the Z index in the 
Arctic. Consistent negative correlations from 950 to 300 hPa 

Fig. 4  Correlations of JJA indices of total DLR (top row), clear-sky 
DLR (middle row), cloud DLR (bottom row, averaged over 70°–90oN 
zonal band) with JJA zonal mean geopotential height (Z) of ERA5 
(first column, 1979–2019, detrended), MERRA-2 (second column, 
1980–2019, detrended), 33 CMIP6 models' mean (third column) and 

the averages of models in the strong group (fourth column) and weak 
group (fifth column) using the pseudo-ensemble method. Stippling 
indicates statistical significance at the 95% confidence level based on 
a two-tailed Student’s t-test considering the effective sample size
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in ERA5, MERRA-2 and CMIP6 models indicate that a 
nearly uniform reduction of tropospheric clouds is associ-
ated with barotropic high pressure in the Arctic troposphere. 
As expected from the Clausius–Clapeyron equation, warm 
tropospheric temperature associated with the upper tropo-
spheric high pressure allows the atmosphere to hold more 
water vapor. If water vapor transport into the Arctic, and/or 
precipitation and evaporation within the Arctic remain con-
stant, the circulation-generated high temperature will lead 
to a reduction of relative humidity in the atmosphere, which 
tends to reduce clouds in the whole troposphere. However, 
near the Arctic surface, cloud responses to the atmospheric 
circulation behave differently between ERA5 and MERRA-2 
and from model to model in CMIP6. In ERA5, prominent 
cloud increases are observed in the boundary layer mainly 
below 950 hPa (Fig. 9a) and the strong group exhibits a simi-
lar feature with a slight positive increase around 1000 hPa 
(~ 200 m above surface in Arctic summer, Fig. 9d). On the 
contrary, boundary layer clouds in MERRA-2 decrease in 
the Arctic region north of  80oN (Fig. 9b). Moreover, there 
are no clear cloud changes near the surface in the weak 
group (Fig. 9e). The large differences of low-level clouds in 
reanalyses and model simulations suggest that this near sur-
face cloud variation could be a key factor in differentiating 

the performance of the strong and weak groups and this dis-
crepancy may be due to a combined effect of temperature 
and humidity in the boundary layer driven by large-scale 
high-pressure anomalies aloft. We next examine the verti-
cal profiles of connections between circulation and cloud-
related atmospheric variables to further examine this pos-
sibility (Fig. 10).

A significant anomalous warming is present in the major-
ity of the troposphere from 950 to 300 hPa (not shown) when 
a barotropic high pressure is generated in the Arctic in all 
data sources since the anticyclone-induced strong subsid-
ence (Fig.  10c) adiabatically heats the atmosphere and 
leads to warmer air above 950 hPa that can strengthen the 
climatological boundary layer inversion over the region. 
Below 950 hPa, temperature and water vapor changes are 
more sensitive to the high pressure forcing in ERA5 than 
MERRA-2 (Fig. 10a, b). This configuration of temperature 
and specific humidity creates an increase in boundary layer 
relative humidity in ERA5 and a weak change in MERRA-2 
(Fig. 10d). Since relative humidity serves as a key driver 
to determine stratus cloud formation (Klein et al. 1995; 
Tjernström 2005; Tjernström and Graversen 2009; Wood 
2012), it is expected that the low-level clouds in ERA5 are 
more sensitive to large-scale circulation variability than 

Fig. 5  Same as Fig. 4 but for correlation between DLR and zonal mean temperature (Temp.)



1985Uncertain role of clouds in shaping summertime atmosphere‑sea ice connections in reanalyses…

1 3

that in MERRA-2 (Fig. 10d,f). But the fundamental cause 
of the discrepancy in relative humidity between ERA5 and 
MERRA-2 remains unclear. The relative humidity is cal-
culated as a ratio of vapor pressure (e) to saturation vapor 
pressure (es) that are mainly determined by humidity and 
temperature conditions, respectively. We thus recalculate 
this relationship by using a different combination of e and 
es derived from ERA5 and MERRA2 to examine why the 
circulation-relative humidity relationship is so different 
between the two datasets. Note that es calculated with the 
ERA5 dataset always favors a higher correlation between the 
circulation and relative humidity (Fig. 10e, red solid and dot 
lines, golden dot line) than using es of MERRA-2 (Fig. 10e, 
red dash line, golden solid and dash lines), regardless of 
whether the geopotential height or e used are from ERA5 
or MERRA2. This indicates that temperature variability 
in MERRA2 is the main source of the low correlation of 
Z-relative humidity close to the surface in MERRA2.

In CMIP6 models, circulation related temperature and 
specific humidity in the lower layer differ slightly between 
the strong and weak group and the essential role of rela-
tive humidity in determining clouds at the boundary layer 
still holds well in models. However, the strong group shows 
a higher correlation than the weak group near the Arctic 

surface only in the Z-Spe.Hum connection (Fig. 10b). This 
suggests a more complex coupling process among atmos-
pheric circulation, temperature, specific humidity and ver-
tical motion that jointly regulate relative humidity change 
in models given the diverse parameterization schemes in 
CMIP6. Therefore, it is still premature to pinpoint exactly 
which process dominates the higher correlation of Z-Rel.
Hum in the strong group.

Having identified the uncertainty in the regulation of 
clouds by the circulation, we next explore which level of 
clouds is most critical for determining the  DLRcloud influ-
ence on the Arctic surface. We link JJA index of  DLRcloud 
with zonal mean cloud cover from two reanalyses, two 
additional satellite data and 33 CMIP6 model outputs 
(Fig. 11). Stronger  DLRcloud striking the Arctic surface is 
related to completely different cloud structures in reanaly-
ses and satellite datasets. ERA5 clouds in the vertical sec-
tion show an out-of-phase configuration (Fig. 11a), while 
MERRA-2 and CALIPSO-GOCCP display a homogeneous 
cloud increase throughout the polar atmosphere (Fig. 11b,c) 
and more clouds form only at mid-levels in CERES-EBAF 
(Fig. 11d). The comparisons among ERA5, MERRA-2, 
CALIPSO-GOCCP, and CERES-EBAF suggest current rea-
nalyses and satellite measurements are very uncertain when 

Fig. 6  Same as Fig. 4 but for correlation between DLR and zonal mean specific humidity (Spe.Hum.)
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we need to quantify the sensitivity of  DLRcloud to clouds 
at different heights. We also computed correlations over 
a common period of 2006 to 2016 and similar discrepan-
cies were found. In ERA5 and the strong group,  DLRcloud 

is predominantly driven by boundary layer clouds, with its 
effect partially offset by a weak negative phase of middle 
and upper-level clouds (Fig. 12). This makes total DLR 
dominated by  DLRclear sky, which strongly links large-scale 

Fig. 7  Same as Fig. 4 but for correlation between DLR and zonal mean omega

Fig. 8  Correlations of JJA total DLR index with clear sky DLR index 
(top row) and cloud DLR index (bottom row) from ERA5 (1979–
2019, detrended), MERRA-2 (1980–2019, detrended), 33 CMIP6 

models' mean and the averages of models in strong and weak groups 
using the pseudo-ensemble method based on a sample size of 40-year
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circulation forcing to sea ice change in summer. In contrast, 
 DLRcloud in MERRA-2 and the weak group is controlled by a 
rather uniform change of clouds from the surface to 300 hPa 
and the sign of this change is opposite to  DLRclear sky. There-
fore, when we consider the contributions of clear sky and 
cloud components to total DLR variability, a weak (strong) 
 DLRcloud contribution in the strong (weak) group may make 
total DLR more (less) sensitive to changes of  DLRclear sky 
(Figs. 8, 12).

We speculate that this process is critical to determine 
why climate models in the two groups behave so differently 
in replicating the observed circulation-sea ice connection, 
which is summarized in the schematic diagram (Fig. 12). 
Unfortunately, currently available reanalysis datasets can-
not be readily used to identify which process is closer to 
reality, given that large uncertainties exist in depicting 
the observed connections between low-level clouds with 

large-scale circulation forcing, especially over the layers 
close to the surface. In addition, the above analysis focusing 
on the boundary layer may be limited by the coarse verti-
cal resolution near the surface. Thus, more observations, 
simulations and assimilation systems operating at higher 
vertical resolution, especially within the boundary layer are 
necessary to enable us to further examine the relationship 
between low boundary clouds and large-scale circulation in 
the Arctic with more confidence.

5  Conclusions and discussions

5.1  Conclusions

Projections of the future sea ice loss under different global 
warming scenarios critically hinge on climate models and 

Fig. 9  Correlations of JJA geopotential height index (Z-index, aver-
aged over  70oN-90oN, 0–360°, 400–200  hPa, red box in Fig.  1a) 
with JJA zonal mean cloud cover of (a) detrended ERA5 data dur-
ing the period of 1979–2019, (b) detrended MERRA-2 data during 
the period of 1980–2019, (c) 33 CMIP6 models' mean, the averages 

of models in (d) strong group and (e) weak group using the pseudo-
ensemble method based on a sample size of 40 years. Stippling indi-
cates statistical significance at the 95% confidence level based on a 
two-tailed Student’s t-test considering the effective sample size
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we must assure that these models have a realistic sensitiv-
ity to projected atmospheric forcing. The observed physical 
process via which summertime large-scale circulation forc-
ing regulates sea ice variability in the melting season by 
changing DLR at the surface represents a critical pathway 
that models should reasonably replicate. To conceptualize 
this pathway, we use the observed Z-DLR correlation pat-
tern as a basis to measure models’ skill. We use 33 CMIP6 
model PI simulations in this study to assess the ability of the 
new generation of CMIP6 models to reproduce this observed 
circulation-DLR pathway. The evaluation is conducted based 
on the JJA Z-DLR correlation pattern on interannual time-
scales to emphasize the thermodynamic atmospheric effects 
on surface energy budget variability. Based on a pseudo-
ensemble method, 33 JJA Z-DLR coupling patterns are gen-
erated and then classified into strongly and weakly coupled 
groups using the SOM artificial neural network algorithm.

By comparing differences of a series of coupling pro-
cesses between circulation, clouds and DLR in the strong 
and weak groups under clear sky and cloudy conditions, 
we find that the circulation adiabatically-induced warm 
temperature and intensified water vapor in the two groups 
are characterized by the same spatial pattern and compa-
rable magnitude under clear sky conditions across ERA5, 
MERRA-2 and all CMIP6 models. This indicates a domi-
nant role of  DLRclear sky in contributing to the total DLR 
variability in the Z-DLR relationship and the strong abil-
ity of the models in replicating this relationship. However, 
 DLRcloud changes in response to large-scale circulation are 
different between ERA5 and MERRA-2 as well as between 
the CMIP6 strongly and weakly coupled models. The incon-
sistency was found to stem mainly from the influence of the 
Arctic large-scale circulation on low-level clouds (below 
950 hPa) by modulating the change of relative humidity 

Fig. 10  Intercomparison of correlation profiles of JJA geopotential 
height index (Z-index, averaged over the red box in Fig. 1a) with Arc-
tic zonal mean (averaged over  70oN–90oN, 0–360°) (a) temperature 
(Temp.), (b) specific humidity (Spe. Hum), (c) omega, (d) relative 
humidy (Rel. Hum) and (f) cloud cover among ERA5 (1979–2019, 
detrended, red solid line), MERRA-2 (1980–2019, detrended, golden 
solid line), 33 CMIP6 models' mean (blue solid line) and the averages 

of models in strong group (blue dashed line) and weak group (blue 
dotted line). CMIP6 calculations use the pseudo-ensemble method 
based on a sample size of 40 years. In (e), the relative humidity cor-
related with Z-index is calculated as the cross-ratio of vapor pressure 
to saturation vapor pressure using ERA5 and MERRA-2 datasets 
(dashed and dotted lines), solid lines are same as those in (d) and dis-
played to facilitate intercomparisons



1989Uncertain role of clouds in shaping summertime atmosphere‑sea ice connections in reanalyses…

1 3

in the boundary layer. Analysis using two additional satel-
lite datasets of CALIPSO-GOCCP and CERES-EBAF also 
show different results and thus highlight the uncertain role 
of clouds in shaping summertime atmosphere-sea ice con-
nections in both observations and CMIP6 models.

5.2  Discussion

In our analysis of CMIP6 models, the spread in the circu-
lation-DLR connection is modulated by differences in the 
vertical structure of cloud changes and the largest source of 
uncertainty is the representation of aerosol and cloud micro-
physical schemes that operate on scales orders of magnitude 
smaller than are being resolved. We are unable to pinpoint 
the cause of these differences due to the substantial diversity 
across CMIP6 models, but in the following we propose three 
possible causes inferred from some clues in our clustering 
analysis:

(1) Based on the clustering groups, we find that five of the 
eight strong models adopt a similar atmospheric com-
ponent originating from different versions of the Com-

munity Atmosphere Model (CAM). We speculate that 
a relatively strong capability of this group of models in 
replicating Z-DLR connections may partly stem from 
the selection of cloud parameterizations of CAM, as 
Zhang et al. (2005) have pointed out that models with 
specific physical parameterizations are more capable 
of simulating certain cloud types. In CAM, the cloud 
microphysics parameterization uses a relative humid-
ity-based scheme (Park et al. 2014), which indicates 
that atmospheric conditions directly linked to relative 
humidity changes show a stronger ability to simulate 
the cloud response to circulation changes in the Arctic 
during summer, as we found in this study.

(2) Some parameterization commonalities based on the 
SOM analysis turn to be associated with aerosol com-
ponents employed in CMIP6. The strongly coupled 
models mostly adopt prognostic representations of 
most key aerosol-related processes, while the weakly 
coupled group tends to use the prescribed aerosol 
scheme (Table 1). For example, the main difference 
between CESM2 (node 2) and CESM2-WACCM6 
(node 6) is that CESM2 has prescribed tropospheric 

Fig. 11  Correlations of JJA index of cloud DLR with JJA zonal mean 
cloud cover of (a) ERA5 (1979–2019, detrended), (b) MERRA-2 
(1980–2019, detrended), (c) CALIPSO-GOCCP (2006–2016, 
detrended), (d) CERES-EBAF (2006–2016, detrended), (e) 33 
CMIP6 models' mean and the averages of models in (f) strong group 
and (g) weak group. Cloud DLR index calculated using satellite data 
of CERES-EBAF-Surface is correlated with cloud cover from both 
CERES-EBAF and CALIPSO-GOCCP, of which the latter lacks 

its own DLR variable in the dataset. In CERES-EBAF, the vertical 
dimension of high, mid-high, mid-low, and low are defined by their 
cloud-top height: less than 300  hPa, 500–300  hPa, 700–500  hPa, 
and greater than 700  hPa, respectively. CMIP6 calculations use the 
pseudo-ensemble method based on a sample size of 40-year. Stip-
pling indicates statistical significance at the 95% confidence level 
based on a two-tailed Student’s t-test considering the effective sample 
size
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oxidants (Danabasoglu et  al. 2020), which are key 
in chemical reactions for the formation of secondary 
aerosols and their ability to act as CCN (DuVivier 
et al. 2020). The same can be seen for the increase in 
Z-DLR coupling strength in use of the prognostic aero-
sol model HAM2.3 in MPI-ESM-1–2-HAM (node 5) 
versus prescribed schemes in MPI-ESM1-2-LR (node 
2) and MPI-ESM1-2-HR(node 3) (Tegen et al. 2019). 
By using prognostic aerosols in a model, transport 
of aerosols from lower-latitude source regions to the 
Arctic are more responsive to atmospheric circulations 
(Shindell et al. 2008; Wang et al. 2013, 2014; Yang 
et al. 2018) and actively interact with Arctic clouds 
through various microphysical and thermodynamical 
pathways (e.g., McFarquhar et al. 2011; Quinn et al. 
2011; AMAP 2015; Ren et al. 2020). Prognostic aero-
sols act as CCN and bridge the circulation forcing on 
cloud droplet number concentration (CDNC) and par-

ticle size in liquid containing clouds (Birch et al. 2012; 
Kodros and Pierce 2017), leading to an Arctic tropo-
sphere with abundant liquid droplets that are smaller 
in size compared to their ice counterparts, which can 
potentially reduce precipitation. This process, in com-
bination with anticyclonic circulation-driven low-level 
warming and inversions may create conditions allowing 
the liquid water clouds to last longer through cloud-top 
radiative cooling and the Wegener-Bergeron-Findeisen 
process (WBF, Tan and Storelvmo 2019), as may be 
occurring in ERA5.

(3) The sensitivity of sub-grid scale parameterizations to 
resolution in cloud simulations also draws our atten-
tion (Ma et al. 2015; Archer-Nicholls et  al. 2016). 
Models with identical atmospheric and aerosol 
components from the weaker coupling groups have 
increased Z-DLR coupling strength at lower hori-
zontal resolutions (i.e., CESM2 vs. CESM-FV2 and 

Fig. 12  A schematic diagram summarizing the Z-DLR coupling pro-
cess in strong and weak groups in CMIP6 models. JJA total surface 
DLR is the sum of two DLR components for clear sky and cloudy 
conditions, which are both modulated by the large-scale circulation 
of a barotropic anticyclone over the Arctic region. The high pressure 
induced clear sky DLR increase shares similar strength in both strong 
and weak groups, while cloud DLR is highly dependent on the verti-

cal distribution of clouds. In the strong group, an out-of-phase cloud 
structure generates more cloud DLR and thus the surface receives 
more total DLR, which is favorable for sea ice melting. In the weak 
group, an in-phase cloud reduction in the troposphere yields a strong 
cooling effect and significantly decreases the total DLR, which is 
unfavorable for sea ice melting
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MPI-ESM1-2-HR vs. MPI-ESM1-2-LR), suggest-
ing that the probability density functions determin-
ing subgrid-scale variability of vertical velocity and 
liquid water content might be sensitive to horizontal 
resolution. Whereas in the stronger coupling group, 
varying resolution does not seem to play an important 
role (i.e., CESM-WACCM6 vs. CESM-WACCM6-FV2 
and HadGEM3-GC31-MM vs. HadGEM3-GC31-LL). 
It should be noted that it is difficult to draw conclu-
sions based on these sub-grid scale parameterizations 
of cloud homogeneity and vertical motions because 
they are often used to tune the models to achieve TOA 
energy balance by modifying low-level stratocumulus 
cloud cover in the tropics (Mauritsen et al. 2012; Guo 
et al. 2015; Danabasoglu et al. 2020).

Although a lot of effort has been spent in understanding 
sea ice projections, it is clear from our study that models still 
have large spread and uncertainty characterizing how DLR 
is linked with circulation-forced clouds. Better observations 
of the relationship between clouds with key atmospheric 
variables within the boundary layer over a broad range of 
time scales is the key first step to allow us to understand 
how clouds are linked to large-scale forcing in the Arctic 
in the real world, which can guide us to better evaluate and 
improve our climate models with more confidence. The 
complexity and uncertainties stemming from cloud observa-
tions and model representations discussed in this paper call 
our attention to an urgent need to attain a better understand-
ing of these important issues.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00382- 023- 06785-9.

Author contributions R. L. processed the CMIP6 outputs, carried out 
all calculations and wrote the main manuscript text. Q.H.D. designed 
the paper structure and revised the paper. I.B. provided the main help 
in polishing this paper and offered constructive comments on aerosols. 
X.Y.C., Z.W.W., M.B. and H.L.W. have provided more positive sug-
gestions for the discussion of cloud simulations and thermodynamical 
process of Arctic air-sea ice connections.

Funding This study was supported by Modeling, Analysis, Predic-
tions and Projections (NA19OAR4310281) as part of NOAA's Climate 
Program Office and NSF’s Polar Programs (OPP-1744598). R. L. and 
X. C. were supported by the National Key R&D Program of China 
under Grant 2019YFC1509100 and 2019YFA0607000. Z. W. was sup-
ported by National Natural Science Foundation of China (NSFC) Major 
Research Plan on West-Pacific Earth System Multi-spheric Interactions 
(No. 92158203) and NSFC (Grant No. 41790475).

Data availability All reanalysis data used in this study were obtained 
from publicly available sources. The ECMWF ERA5 reanalysis prod-
uct is available at https:// www. ecmwf. int/ en/ forec asts/ datas ets/ reana 
lysis- datas ets/ era5. Information about vapor pressure and saturation 
vapor pressure calculations in ERA5 is available at https:// www. ecmwf. 
int/ sites/ defau lt/ files/ elibr ary/ 2016/ 17117- part- iv- physi cal- proce sses. 
pdf# subse ction.7. 4.2. NASA MERRA-2 data is from https:// gmao. gsfc. 

nasa. gov/ reana lysis/ MERRA-2/ data_ access/. Sea Ice Concentration 
from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave 
Data is accessed from NSA DAAC at the National Snow and Ice Data 
Center at https:// nsidc. org/ data/ nsidc- 0051. Cloud products of CERES-
EBAF Ed4.0 and CALIPSO-GOCCP are archived at https:// ceres. larc. 
nasa. gov/ data/ and https:// clims erv. ipsl. polyt echni que. fr/ cfmip- obs/, 
respectively. The CMIP6 model outputs used in this study are available 
from the Earth System Grid Federation from https:// esgf- node. llnl. gov/ 
search/ cmip6/. The SOM package for analysis in this study is developed 
by MATLAB v9.10.0.

Declarations 

Conflict of interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

AMAP (2015) AMAP Assessment 2015: Black carbon and ozone as 
Arctic climate forcers. Arctic Monitoring and Assessment Pro-
gramme (AMAP), Oslo, Norway. vii + 116 pp.

Archer-Nicholls S, Lowe D, Schultz DM, McFiggans G (2016) Aero-
sol-radiation-cloud interactions in a regional coupled model: the 
effects of convective parameterisation and resolution. Atmos-
pheric Chem Phys 16:5573–5594. https:// doi. org/ 10. 5194/ 
acp- 16- 5573- 2016

Baxter I et al (2019) How Tropical pacific surface cooling contributed 
to accelerated sea ice melt from 2007 to 2012 as ice is thinned by 
anthropogenic forcing. J Clim 32:8583–8602. https:// doi. org/ 10. 
1175/ JCLI-D- 18- 0783.1

Bennartz R, Shupe MD, Turner DD, Walden VP, Steffen K, Cox CJ, 
Kulie MS, Miller NB, Pettersen C (2013) Greenland melt extent 
enhanced by low-level liquid clouds. Nature 496:83–86. https:// 
doi. org/ 10. 1038/ natur e12002

Birch CE, Brooks IM, Tjernström M, Shupe MD, Mauritsen T, Sedlar 
J, Lock AP, Earnshaw P, Persson PO, Milton SF, Leck C (2012) 
Modelling atmospheric structure, cloud and their response to CCN 
in the central Arctic: ASCOS case studies. Atmospheric Chem 
Phys 12:3419–3435. https:// doi. org/ 10. 5194/ acp- 12- 3419- 2012

Boeke RC, Taylor PC (2016) Evaluation of the Arctic surface radiation 
budget in CMIP5 models. J Geophys Res Atmos 121:8525–8548. 
https:// doi. org/ 10. 1002/ 2016J D0250 99

Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996, updated yearly) 
Sea ice concentrations form Nimbus-7 SMMR and DMSP SSM/I 
passive microwave data, 1980-1999. National Snow and Ice Data 
Center, Boulder, Colorado, USA. http:// nsidc. org/ data/ nsidc- 0051. 
html

Cesana G, Chepfer H (2013) Evaluation of the cloud thermodynamic 
phase in a climate model using CALIPSO-GOCCP. J Geophys 
Res Atmos 118:7922–7937. https:// doi. org/ 10. 1002/ jgrd. 50376

https://doi.org/10.1007/s00382-023-06785-9
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.7.4.2
https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.7.4.2
https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.7.4.2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://nsidc.org/data/nsidc-0051
https://ceres.larc.nasa.gov/data/
https://ceres.larc.nasa.gov/data/
https://climserv.ipsl.polytechnique.fr/cfmip-obs/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5194/acp-16-5573-2016
https://doi.org/10.5194/acp-16-5573-2016
https://doi.org/10.1175/JCLI-D-18-0783.1
https://doi.org/10.1175/JCLI-D-18-0783.1
https://doi.org/10.1038/nature12002
https://doi.org/10.1038/nature12002
https://doi.org/10.5194/acp-12-3419-2012
https://doi.org/10.1002/2016JD025099
http://nsidc.org/data/nsidc-0051.html
http://nsidc.org/data/nsidc-0051.html
https://doi.org/10.1002/jgrd.50376


1992 R. Luo et al.

1 3

Cesana G, Kay JE, Chepfer H, English JM, De Boer G (2012) Ubiqui-
tous low-level liquid-containing Arctic clouds: New observations 
and climate model constraints from CALIPSO-GOCCP. Geophys 
Res Lett 39. https:// doi. org/ 10. 1029/ 2012G L0533 85

Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, West-
ermann S (2017) An observation-based constraint on permafrost 
loss as a function of global warming. Nat Clim Change 7:340–
344. https:// doi. org/ 10. 1038/ nclim ate32 62

Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, 
Stubenrauch CJ, Zeng S (2010) The GCM-oriented calipso cloud 
product (CALIPSO-GOCCP). J Geophys Res Atmos 115. https:// 
doi. org/ 10. 1029/ 2009J D0122 51

Chernokulsky A, Mokhov II (2012) Climatology of total cloudiness 
in the Arctic: An intercomparison of observations and reanalyses. 
Adv Meteorol 2012. https:// doi. org/ 10. 1155/ 2012/ 542093

Chernykh IV, Alduchov OA, Eskridge RE (2001) Trends in low and 
high cloud boundaries and errors in height determination of cloud 
boundaries. Bull Am Meteorol Soc 82:1941–1948. https:// doi. org/ 
10. 1175/ 1520- 0477(2001) 082% 3c1941: TILAHC% 3e2.3. CO;2

Christensen MW, Behrangi A, L’ecuyer TS, Wood NB, Lebsock MD, 
Stephens GL (2016) Arctic observation and reanalysis integrated 
system: a new data product for validation and climate study. 
Bull Am Meteorol Soc 97:907–916. https:// doi. org/ 10. 1175/ 
BAMS-D- 14- 00273.1

Curry JA, Ebert EE, Herman GF (1988) Mean and turbulence structure 
of the summertime Arctic cloudy boundary layer. Quart J R Met 
Soc 114:715–746. https:// doi. org/ 10. 1002/ qj. 49711 448109

Curry JA, Schramm JL, Rossow WB, Randall D (1996) Overview of 
Arctic cloud and radiation characteristics. J Clim 9:1731–1764. 
https:// doi. org/ 10. 1175/ 1520- 0442(1996) 009% 3c1731: OOA-
CAR% 3e2.0. CO;2

Danabasoglu G, Lamarque JF, Bacmeister J, Bailey DA, DuVivier 
AK, Edwards J, Emmons LK, Fasullo J, Garcia R, Gettelman A, 
Hannay C (2020) The community earth system model version 
2 (CESM2). J Adv Model Earth Syst 12(2), e2019MS001916. 
https:// doi. org/ 10. 1029/ 2019M S0019 16

Ding Q et al (2017) Influence of high-latitude atmospheric circula-
tion changes on summertime Arctic sea ice. Nat Clim Change 
7:289–295. https:// doi. org/ 10. 1038/ nclim ate32 41

Ding Q et al (2019) Fingerprints of internal drivers of Arctic sea ice 
loss in observations and model simulations. Nat Geosci 12:28–33. 
https:// doi. org/ 10. 1038/ S41561- 018- 0256-8

DuVivier AK, Holland MM, Kay JE, Tilmes S, Gettelman A, Bailey 
DA (2020) Arctic and Antarctic sea ice mean state in the Com-
munity Earth System Model version 2 and the influence of atmos-
pheric chemistry. J Geophys Res Oceans 125, e2019JC015934. 
https:// doi. org/ 10. 1029/ 2019J C0159 34

Duynkerke PG, de Roode SR (2001) Surface energy balance and tur-
bulence characteristics observed at the SHEBA Ice Camp during 
FIRE III. J Geophys Res Atmos 106:15313–15322. https:// doi. 
org/ 10. 1029/ 2000J D9005 37

Eastman R, Warren SG (2010) Interannual variations of Arctic cloud 
types in relation to sea ice. J Clim 23:4216–4232. https:// doi. org/ 
10. 1175/ 2010J CLI34 92.1

Efimova NA (1961) On methods of calculating monthly values of net 
longwave radiation. Meterol Gidrol 10:28–33

English JM, Gettelman A, Henderson GR (2015) Arctic radiative 
fluxes: Present-day biases and future projections in CMIP5 
models. J Clim 28:6019–6038. https:// doi. org/ 10. 1175/ 
JCLI-D- 14- 00801.1

Francis JA, Wu B (2020) Why has no new record-minimum Arctic 
sea-ice extent occurred since September 2012? Environ Res Lett 
15:114034. https:// doi. org/ 10. 1088/ 1748- 9326/ abc047

Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, 
Randles CA, Darmenov A, Bosilovich MG, Reichle R, Zhao WK, 
B, (2017) The modern-era retrospective analysis for research 

and applications, version 2 (MERRA-2). J Clim 30:5419–5454. 
https:// doi. org/ 10. 1175/ JCLI-D- 16- 0758.1

Global modeling and assimilation office (GMAO) (2015) MERRA-2 
instM_3d_asm_Np: 3d, Monthly mean, instantaneous, pressure-
level, assimilation, assimilated meteorological fields v5.12.4, 
greenbelt, md, usa, goddard earth sciences data and informa-
tion services center (GES DISC), Accessed: [2021-12-22], 
10.5067/2E096JV59PK7.

Graham RM, Cohen L, Ritzhaupt N, Segger B, Graversen RG, Rinke 
A, Walden VP, Granskog MA, Hudson SR (2019a) Evaluation 
of six atmospheric reanalyses over Arctic sea ice from winter 
to early summer. J Clim 32:4121–4143. https:// doi. org/ 10. 1175/ 
JCLI-D- 18- 0643.1

Graham RM, Hudson SR, Maturilli M (2019b) Improved performance 
of ERA5 in Arctic gateway relative to four global atmospheric 
reanalyses. Geophys Res Lett 46:6138–6147. https:// doi. org/ 10. 
1029/ 2019G L0827 81

Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson 
G (2008) Vertical structure of recent Arctic warming. Nature 
451:53–56. https:// doi. org/ 10. 1038/ natur e06502

Guo Z, Wang M, Qian Y, Larson VE, Ghan S, Ovchinnikov M, A. 
Bogenschutz P, Gettelman A, Zhou T, (2015) Parametric behav-
iors of CLUBB in simulations of low clouds in the C ommunity a 
tmosphere Model (CAM). J Adv Model Earth Syst 7:1005–1025. 
https:// doi. org/ 10. 1002/ 2014M S0004 05

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-
Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A 
(2020) The ERA5 global reanalysis. Quart J R Met Soc 146:1999–
2049. https:// doi. org/ 10. 1002/ qj. 3803

Huang Y, Dong X, Xi B, Dolinar EK, Stanfield RE, Qiu S (2017) Quan-
tifying the uncertainties of reanalyzed arctic cloud and radiation 
properties using satellite surface observations. J Clim 30:8007–
8029. https:// doi. org/ 10. 1175/ JCLI-D- 16- 0722.1

Huang Y, Dong X, Bailey DA, Holland MM, Xi B, DuVivier AK, Kay 
JE, Landrum LL, Deng Y (2019) Thicker clouds and acceler-
ated Arctic sea ice decline: The atmosphere-sea ice interactions 
in spring. Geophys Res Lett 46:6980–6989. https:// doi. org/ 10. 
1029/ 2019G L0827 91

Huang Y, Ding Q, Dong X, Xi B, Baxter I (2021) Summertime low 
clouds mediate the impact of the large-scale circulation on Arc-
tic sea ice. Environ Earth Sci 2:1–10. https:// doi. org/ 10. 1038/ 
s43247- 021- 00114-w

IPCC. 2014. Climate Change 2014: Synthesis report. Contribution of 
working groups I, II and III to the fifth assessment report of the 
intergovernmental panel on climate change, eds. R.K. Pachauri, 
and L.A. Meyer. Geneva: IPCC.

Jacobs JD (1978) Radiation climate of broughton island. Energy budget 
studies in relation to fast-ice breakup processes in Davis Strait, 
105–120.

Jun SY, Ho CH, Jeong JH, Choi YS, Kim BM (2016) Recent changes 
in winter Arctic clouds and their relationships with sea ice 
and atmospheric conditions. Tellus a: Dyn Meteorol Oceanogr 
68:29130. https:// doi. org/ 10. 3402/ tellu sa. v68. 29130

Kapsch ML, Graversen RG, Tjernström M, Bintanja R (2016) The 
effect of downwelling longwave and shortwave radiation on Arctic 
summer sea ice. J Clim 29:1143–1159. https:// doi. org/ 10. 1175/ 
JCLI-D- 15- 0238.1

Kay JE, Gettelman A (2009) Cloud influence on and response to sea-
sonal Arctic sea ice loss. J Geophys Res 114:D18204. https:// doi. 
org/ 10. 1029/ 2009J D0117 73

Kay J, Holland M, Jahn A (2011) Inter-annual to multi-decadal Arc-
tic sea ice extent trends in a warming world. Geophys Res Lett 
38:L15708. https:// doi. org/ 10. 1029/ 2011G L0480 08

Kay JE, Hillman BR, Klein SA, Zhang Y, Medeiros B, Pincus R, 
Gettelman A, Eaton B, Boyle J, Marchand R, Ackerman TP (2012) 
Exposing global cloud biases in the Community Atmosphere 

https://doi.org/10.1029/2012GL053385
https://doi.org/10.1038/nclimate3262
https://doi.org/10.1029/2009JD012251
https://doi.org/10.1029/2009JD012251
https://doi.org/10.1155/2012/542093
https://doi.org/10.1175/1520-0477(2001)082%3c1941:TILAHC%3e2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082%3c1941:TILAHC%3e2.3.CO;2
https://doi.org/10.1175/BAMS-D-14-00273.1
https://doi.org/10.1175/BAMS-D-14-00273.1
https://doi.org/10.1002/qj.49711448109
https://doi.org/10.1175/1520-0442(1996)009%3c1731:OOACAR%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009%3c1731:OOACAR%3e2.0.CO;2
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1038/nclimate3241
https://doi.org/10.1038/S41561-018-0256-8
https://doi.org/10.1029/2019JC015934
https://doi.org/10.1029/2000JD900537
https://doi.org/10.1029/2000JD900537
https://doi.org/10.1175/2010JCLI3492.1
https://doi.org/10.1175/2010JCLI3492.1
https://doi.org/10.1175/JCLI-D-14-00801.1
https://doi.org/10.1175/JCLI-D-14-00801.1
https://doi.org/10.1088/1748-9326/abc047
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-18-0643.1
https://doi.org/10.1175/JCLI-D-18-0643.1
https://doi.org/10.1029/2019GL082781
https://doi.org/10.1029/2019GL082781
https://doi.org/10.1038/nature06502
https://doi.org/10.1002/2014MS000405
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JCLI-D-16-0722.1
https://doi.org/10.1029/2019GL082791
https://doi.org/10.1029/2019GL082791
https://doi.org/10.1038/s43247-021-00114-w
https://doi.org/10.1038/s43247-021-00114-w
https://doi.org/10.3402/tellusa.v68.29130
https://doi.org/10.1175/JCLI-D-15-0238.1
https://doi.org/10.1175/JCLI-D-15-0238.1
https://doi.org/10.1029/2009JD011773
https://doi.org/10.1029/2009JD011773
https://doi.org/10.1029/2011GL048008


1993Uncertain role of clouds in shaping summertime atmosphere‑sea ice connections in reanalyses…

1 3

Model (CAM) using satellite observations and their correspond-
ing instrument simulators. J Clim 25:5190–5207. https:// doi. org/ 
10. 1175/ JCLI-D- 11- 00469.1

Kay J, L’Ecuyer T, Chepfer H, Loeb N, Morrison A, Cesana G 
(2016) Recent advances in Arctic cloud and climate research. 
Curr Climate Change Rep 2:159–169. https:// doi. org/ 10. 1007/ 
s40641- 016- 0051-9

Kay JE, L'Ecuyer T, Gettelman A, Stephens G, O'Dell C (2008) The 
contribution of cloud and radiation anomalies to the 2007 Arctic 
sea ice extent minimum. Geophys Res Lett 35. https:// doi. org/ 10. 
1029/ 2008G L0334 51

King JC, Connolley WM (1997) Validation of the surface energy bal-
ance over the Antarctic ice sheets in the UK meteorological office 
unified climate model. J Clim 10:1273–1287. https:// doi. org/ 10. 
1175/ 1520- 0442(1997) 010% 3C1273: VOTSEB% 3E2.0. CO;2

Klein SA, Hartmann DL, Norris JR (1995) On the relationships 
among low-cloud structure, sea surface temperature, and atmos-
pheric circulation in the summertime northeast Pacific. J Clim 
8:1140–1155. https:// doi. org/ 10. 1175/ 1520- 0442(1995) 008% 
3c1140: OTRALC% 3e2.0. CO;2

Kleist DT, Parrish DF, Derber JC, Treadon R, Wu WS, Lord S (2009) 
Introduction of the GSI into the NCEP global data assimilation 
system. Weather Forecast 24:1691–1705. https:// doi. org/ 10. 
1175/ 2009W AF222 2201.1

Kodros JK, Pierce JR (2017) Important global and regional differ-
ences in aerosol cloud-albedo effect estimates between simu-
lations with and without prognostic aerosol microphysics. J 
Geophys Res Atmos 122:4003–4018. https:// doi. org/ 10. 1002/ 
2016J D0258 86

Kohonen T (1990) The self-organizing map. Proc IEEE Inst Electr 
Electron Eng 78:1464–1480

Li Z, Ding Q, Steele M, Schweiger A (2022) Recent upper Arctic Ocean 
warming expedited by summertime atmospheric processes. Nat 
Commun 13:1–11. https:// doi. org/ 10. 1038/ s41467- 022- 28047-8

Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang 
L, Mitrescu C, Rose FG, Kato S (2018) Clouds and the earth’s 
radiant energy system (CERES) energy balanced and filled 
(EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J 
Clim 31:895–918. https:// doi. org/ 10. 1175/ JCLI-D- 17- 0208.1

Luo R, Ding Q, Wu Z, Baxter I, Bushuk M, Huang Y, Dong X (2021) 
Summertime atmosphere-sea ice coupling in the Arctic simulated 
by CMIP5/6 models: importance of large-scale circulation. Clim 
Dyn 56:1467–1485. https:// doi. org/ 10. 1007/ s00382- 020- 05543-5

Ma PL, Rasch PJ, Wang M, Wang H, Ghan SJ, Easter RC, Gustafson 
WI Jr, Liu X, Zhang Y, Ma HY (2015) How does increasing hori-
zontal resolution in a global climate model improve the simulation 
of aerosol-cloud interactions? Geophys Res Lett 42:5058–5065. 
https:// doi. org/ 10. 1002/ 2015G L0641 83

Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, 
Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U (2012) 
Tuning the climate of a global model. J Adv Model Earth Syst 4. 
https:// doi. org/ 10. 1029/ 2012M S0001 54

Mayer M, Tietsche S, Haimberger L, Tsubouchi T, Mayer J, Zuo H 
(2019) An improved estimate of the coupled Arctic energy budget. 
J Clim 32:7915–7934. https:// doi. org/ 10. 1175/ JCLI-D- 19- 0233.1

Mayer J, Mayer M, Haimberger L, Liu C (2022) Comparison of surface 
energy fluxes from global to local scale. J Clim 35:4551–4569. 
https:// doi. org/ 10. 1175/ JCLI-D- 21- 0598.1

McFarquhar GM, Ghan S, Verlinde J, Korolev A, Strapp JW, Schmid 
B, Tomlinson JM, Wolde M, Brooks SD, Cziczo D, Dubey MK 
(2011) Indirect and semi-direct aerosol campaign: The impact of 
Arctic aerosols on clouds. Bull Am Meteorol Soc 92:183–201. 
https:// doi. org/ 10. 1175/ 2010B AMS29 35.1

Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) 
Radiative transfer for inhomogeneous atmospheres: RRTM, a 

validated correlated-k model for the longwave. J Geophys Res 
Atmos 102:16663–16682. https:// doi. org/ 10. 1029/ 97JD0 0237

Morrison AL, Kay JE, Frey WR, Chepfer H, Guzman R (2019) 
Cloud response to Arctic sea ice loss and implications for future 
feedback in the CESM1 climate model. J Geophys Res Atmos 
124:1003–1020. https:// doi. org/ 10. 1029/ 2018J D0291 42

Murray FW (1967) On the computation of saturation vapor pres-
sure. J Appl Meteorol 6:203–204.https:// doi. org/ 10. 1175/ 1520- 
0450(1967) 006< 0203: OTCOS V>2. 0. CO;2

Ogi M, Yamazaki K, Wallace JM (2010) Influence of winter and sum-
mer surface wind anomalies on summer Arctic sea ice extent. 
Geophys Res Lett 37:L07701. https:// doi. org/ 10. 1029/ 2009G 
L0423 56

Ogi M, Wallace JM (2012) The role of summer surface wind anomalies 
in the summer Arctic sea ice extent in 2010 and 2011. Geophys 
Res Lett 39. https:// doi. org/ 10. 1029/ 2012G L0513 30

Overland JE, Hanna E, Hanssen-Bauer I, Kim SJ, Walsh JE, Wang M, 
Bhatt US, Thoman RL, Ballinger TJ (2015) Surface air tempera-
ture. Arctic report card, 2015, 10–16. ftp:// ftp. oar. noaa. gov/ arctic/ 
docum ents/ Arcti cRepo rtCard_ full_ repor t2015. pdf

Park S, Bretherton CS, Rasch PJ (2014) Integrating cloud processes in 
the Community Atmosphere Model, version 5. J Clim 27:6821–
6856. https:// doi. org/ 10. 1175/ JCLI-D- 14- 00087.1

Quinn PK, Stohl A, Arneth A, Berntsen T, Burkhart J, Christensen J, 
Flanner M, Kupiainen K, Lihavainen H, Shepherd M, Shevchenko 
VP (2011) The Impact of Black Carbon on Arctic Climate, AMAP 
Tech. Rep. 4, 72 pp., Arctic Monitoring and Assessment Pro-
gramme (AMAP), Oslo.

Ren L, Yang Y, Wang H, Zhang R, Wang P, Liao H (2020) Source attri-
bution of Arctic black carbon and sulfate aerosols and associated 
Arctic surface warming during 1980–2018. Atmospheric Chem 
Phys 20:9067–9085. https:// doi. org/ 10. 5194/ acp- 20- 9067- 2020

Schweiger AJ, Lindsay RW, Vavrus S, Francis JA (2008) Relation-
ships between Arctic sea ice and clouds during autumn. J Clim 
21:4799–4810. https:// doi. org/ 10. 1175/ 2008J CLI21 56.1

Screen JA, Simmonds I (2010) The central role of diminishing sea 
ice in recent Arctic temperature amplification. Nature 464:1334–
1337. https:// doi. org/ 10. 1038/ natur e09051

Sedlar J (2018) Spring Arctic atmospheric preconditioning: Do not rule 
out shortwave radiation just yet. J Clim 31:4225–4240. https:// doi. 
org/ 10. 1175/ JCLI-D- 17- 0710.1

Sedlar J, Tjernström M (2017) Clouds, warm air and a climate cooling 
signal over the summer Arctic. Geophys Res Lett 44:1095–1103. 
https:// doi. org/ 10. 1002/ 2016G L0719 59

Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) 
The emergence of surface-based Arctic amplification. Cryosphere 
3:11–19. https:// doi. org/ 10. 5194/ tc-3- 11- 2009

Shindell DT, Chin M, Dentener F, Doherty RM, Faluvegi G, Fiore 
AM, Hess P, Koch DM, MacKenzie IA, Sanderson MG, Schultz 
MG (2008) A multi-model assessment of pollution transport to 
the Arctic. Atmosp Chem Phys 8:5353–5372. https:// doi. org/ 10. 
5194/ acp-8- 5353- 2008

Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the Arctic 
surface: the influence of cloud properties, surface albedo, and 
solar zenith angle. J Clim 17:616–628.https:// doi. org/ 10. 1175/ 
1520- 0442(2004) 017% 3C0616: CRFOTA% 3E2.0. CO;2

Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP 
(2012) The Arctic’s rapidly shrinking sea ice cover: a research 
synthesis. Clim Change 110:1005–1027. https:// doi. org/ 10. 1007/ 
s10584- 011- 0101-1

Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of 
internal variability on Arctic sea-ice trends. Nat Clim Change 
5(2):86–89. https:// doi. org/ 10. 1038/ nclim ate24 83

Tan I, Storelvmo T (2019) Evidence of strong contributions from 
mixed-phase clouds to Arctic climate change. Geophys Res Lett 
46:2894–2902. https:// doi. org/ 10. 1029/ 2018G L0818 71

https://doi.org/10.1175/JCLI-D-11-00469.1
https://doi.org/10.1175/JCLI-D-11-00469.1
https://doi.org/10.1007/s40641-016-0051-9
https://doi.org/10.1007/s40641-016-0051-9
https://doi.org/10.1029/2008GL033451
https://doi.org/10.1029/2008GL033451
https://doi.org/10.1175/1520-0442(1997)010%3C1273:VOTSEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C1273:VOTSEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3c1140:OTRALC%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3c1140:OTRALC%3e2.0.CO;2
https://doi.org/10.1175/2009WAF2222201.1
https://doi.org/10.1175/2009WAF2222201.1
https://doi.org/10.1002/2016JD025886
https://doi.org/10.1002/2016JD025886
https://doi.org/10.1038/s41467-022-28047-8
https://doi.org/10.1175/JCLI-D-17-0208.1
https://doi.org/10.1007/s00382-020-05543-5
https://doi.org/10.1002/2015GL064183
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1175/JCLI-D-19-0233.1
https://doi.org/10.1175/JCLI-D-21-0598.1
https://doi.org/10.1175/2010BAMS2935.1
https://doi.org/10.1029/97JD00237
https://doi.org/10.1029/2018JD029142
https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
https://doi.org/10.1029/2009GL042356
https://doi.org/10.1029/2009GL042356
https://doi.org/10.1029/2012GL051330
ftp://ftp.oar.noaa.gov/arctic/documents/ArcticReportCard_full_report2015.pdf
ftp://ftp.oar.noaa.gov/arctic/documents/ArcticReportCard_full_report2015.pdf
https://doi.org/10.1175/JCLI-D-14-00087.1
https://doi.org/10.5194/acp-20-9067-2020
https://doi.org/10.1175/2008JCLI2156.1
https://doi.org/10.1038/nature09051
https://doi.org/10.1175/JCLI-D-17-0710.1
https://doi.org/10.1175/JCLI-D-17-0710.1
https://doi.org/10.1002/2016GL071959
https://doi.org/10.5194/tc-3-11-2009
https://doi.org/10.5194/acp-8-5353-2008
https://doi.org/10.5194/acp-8-5353-2008
https://doi.org/10.1175/1520-0442(2004)017%3C0616:CRFOTA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C0616:CRFOTA%3E2.0.CO;2
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1038/nclimate2483
https://doi.org/10.1029/2018GL081871


1994 R. Luo et al.

1 3

Tegen I, Neubauer D, Ferrachat S, Drian SL, Bey I, Schutgens N, Stier 
P, Watson-Parris D, Stanelle T, Schmidt H, Rast S (2019) The 
global aerosol-climate model ECHAM6. 3-HAM2. 3-Part 1: aero-
sol evaluation. Geosci Model Dev 12:1643–1677. https:// doi. org/ 
10. 5194/ gmd- 12- 1643- 2019

Tjernström M (2005) The summer Arctic boundary layer during the 
Arctic Ocean Experiment 2001 (AOE-2001). Bound-Layer Mete-
orol 117:5–36. https:// doi. org/ 10. 1007/ s10546- 004- 5641-8

Tjernström M, Graversen RG (2009) The vertical structure of the lower 
Arctic troposphere analysed from observations and the ERA-40 
reanalysis. Quart J R Met Soc 135:431–443. https:// doi. org/ 10. 
1002/ qj. 380

Topál D, Ding Q, Mitchell J, Baxter I, Herein M, Haszpra T, Luo R, 
Li Q (2020) An internal atmospheric process determining sum-
mertime Arctic sea ice melting in the next three decades: lessons 
learned from five large ensembles and multiple CMIP5 climate 
simulations. J Clim 33:7431–7454. https:// doi. org/ 10. 1175/ 
JCLI-D- 19- 0803.1

Van den Broeke MR, Enderlin EM, Howat IM, Kuipers Munneke P, 
Noël BP, Van De Berg WJ, Van Meijgaard E, Wouters B (2016) 
On the recent contribution of the Greenland ice sheet to sea level 
change. Cryosphere 10:1933–1946. https:// doi. org/ 10. 5194/ 
tc- 10- 1933- 2016

Walsh JE, Chapman WL, Portis DH (2009) Arctic cloud fraction and 
radiative fluxes in atmospheric reanalyses. J Clim 22:2316–2334. 
https:// doi. org/ 10. 1175/ 2008J CLI22 13.1

Wang H, Easter RC, Rasch PJ, Wang M, Liu X, Ghan SJ, Qian Y, 
Yoon JH, Ma PL, Vinoj V (2013) Sensitivity of remote aerosol 
distributions to representation of cloud-aerosol interactions in a 
global climate model. Geosci Model Dev 6:765–782. https:// doi. 
org/ 10. 5194/ gmd-6- 765- 2013

Wang H, Rasch PJ, Easter RC, Singh B, Zhang R, Ma PL, Qian Y, 
Ghan SJ, Beagley N (2014) Using an explicit emission tagging 
method in global modeling of source-receptor relationships for 
black carbon in the Arctic: variations, sources, and transport path-
ways. J Geophys Res Atmos 119:12–888. https:// doi. org/ 10. 1002/ 
2014J D0222 97

Wang C, Graham RM, Wang K, Gerland S, Granskog MA (2019) Com-
parison of ERA5 and ERA-Interim near-surface air temperature, 
snowfall and precipitation over Arctic sea ice: effects on sea 
ice thermodynamics and evolution. Cryosphere 13:1661–1679. 
https:// doi. org/ 10. 5194/ tc- 13- 1661- 2019

Wettstein JJ, Deser C (2014) Internal variability in projections of 
twenty-first-century Arctic sea ice loss: Role of the large-scale 
atmospheric circulation. J Clim 27:527–550. https:// doi. org/ 10. 
1175/ JCLI-D- 12- 00839.1

Wild M, Ohmura A, Gilgen H, Roeckner E (1995) Validation of general 
circulation model radiative fluxes using surface observations. J 
Clim 8:1309–1324. https:// doi. org/ 10. 1175/ 1520- 0442(1995) 
008% 3C1309: VOGCMR% 3E2.0. CO;2

Winton M (2006) Amplified Arctic climate change: What does surface 
albedo feedback have to do with it? Geophys Res Lett 33. https:// 
doi. org/ 10. 1029/ 2005G L0252 44

Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140:2373–
2423. https:// doi. org/ 10. 1175/ MWR-D- 11- 00121.1

Yang Y, Wang H, Smith SJ, Easter RC, Rasch PJ (2018) Sulfate aerosol 
in the Arctic: source attribution and radiative forcing. J Geophys 
Res Atmos 123:1899–1918. https:// doi. org/ 10. 1002/ 2017J D0272 
98

Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, 
Del Genio AD, Hack JJ, Loeb NG, Lohmann U, Minnis P (2005) 
Comparing clouds and their seasonal variations in 10 atmospheric 
general circulation models with satellite measurements. J Geophys 
Res Atmos 110. https:// doi. org/ 10. 1029/ 2004J D0050 21

Zib BJ, Dong X, Xi B, Kennedy A (2012) Evaluation and intercompari-
son of cloud fraction and radiative fluxes in recent reanalyses over 
the Arctic using BSRN surface observations. J Clim 25:2291–
2305. https:// doi. org/ 10. 1175/ JCLI-D- 11- 00147.1

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.1007/s10546-004-5641-8
https://doi.org/10.1002/qj.380
https://doi.org/10.1002/qj.380
https://doi.org/10.1175/JCLI-D-19-0803.1
https://doi.org/10.1175/JCLI-D-19-0803.1
https://doi.org/10.5194/tc-10-1933-2016
https://doi.org/10.5194/tc-10-1933-2016
https://doi.org/10.1175/2008JCLI2213.1
https://doi.org/10.5194/gmd-6-765-2013
https://doi.org/10.5194/gmd-6-765-2013
https://doi.org/10.1002/2014JD022297
https://doi.org/10.1002/2014JD022297
https://doi.org/10.5194/tc-13-1661-2019
https://doi.org/10.1175/JCLI-D-12-00839.1
https://doi.org/10.1175/JCLI-D-12-00839.1
https://doi.org/10.1175/1520-0442(1995)008%3C1309:VOGCMR%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3C1309:VOGCMR%3E2.0.CO;2
https://doi.org/10.1029/2005GL025244
https://doi.org/10.1029/2005GL025244
https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.1002/2017JD027298
https://doi.org/10.1002/2017JD027298
https://doi.org/10.1029/2004JD005021
https://doi.org/10.1175/JCLI-D-11-00147.1

	Uncertain role of clouds in shaping summertime atmosphere-sea ice connections in reanalyses and CMIP6 models
	Abstract
	1 Introduction
	2 Data and methods
	2.1 Circulation, radiation, cloud and sea ice data
	2.2 CMIP6 simulations
	2.3 Partial correlation method
	2.4 Self-organizing maps

	3 Atmospheric forcing on sea ice via the surface energy budget
	3.1 The key role of downward longwave radiation (DLR) in the circulation-sea ice connection in reanalysis and CMIP6
	3.2 Characterization of CMIP6 Z-DLR patterns by SOM

	4 The uncertain role of clouds in forming the Z-DLR connection
	4.1 Complex relationships between atmosphere and DLRcloud
	4.2 Large uncertainties of reanalyses and CMIP6 models in simulating low-level clouds

	5 Conclusions and discussions
	5.1 Conclusions
	5.2 Discussion

	Anchor 18
	References




